

The quest for explaining the top-row CKM unitarity deficit

Chien-Yeah Seng

Helmholtz-Institut für Strahlen- und Kernphysik and

Bethe Center for Theoretical Physics, Universität Bonn

cseng@hiskp.uni-bonn.de

Rare & Precision Frontier's Virtual Townhall Meeting 2 October, 2020

SNOWMASS21-RF2_RF3-NF0_NF0-TF0_TF0_Gorshteyn-055

The quest for explaining the top-row CKM unitarity deficit

Contact: Misha Gorshteyn (Mainz) gorshtey@uni-mainz.de; Chien-Yeah Seng (Bonn) cseng@hiskp.uni-bonn.de

Authored/Endorsed by: S. Bacca, M. Gorshteyn, F. Maas, H. Spiesberger (Mainz); J. Erler (UNAM/Mainz); U.-G. Meißner (Bonn/Jülich); C.-Y. Seng (Bonn); V. Cirigliano (LANL); W. Marciano (BNL); C.J. Horowitz (Indiana U.); M.J. Ramsey-Musolf (T.-D. Lee Institute/Shanghai Jiao Tong U.; UMass); K. Kumar (UMass); L. Jin (UCONN); X. Feng (PKU); R.J. Hill (U. Kentucky/Fermilab); G. Hagen (ORNL); S. Pastore (WUSTL); A.R. Young (NCSU).

Motivation:

Recent improvements in theory/experiment of the extraction of V_{ud} and V_{us} have led to an apparent violation of the top-row CKM unitarity at 3σ level:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985(3)V_{ud}(4)V_{us} \qquad (PDG 2020)$$

Needs **further reduction of SM uncertainties** to reach a level sufficient to claim a discovery.

Superallowed $0^+ \rightarrow 0^+$:

$$|V_{ud}|^2 = \frac{2984.43 \, s}{\mathcal{F}t \left(1 + \Delta_R^V\right)}.$$

Experiment + nuclear corrections

Single-nucleon radiative correction (RC)

Error budget in early 2018:

Recent dispersion relation (DR) analysis reduced the uncertainty in the single-nucleon RC.

$$|V_{ud}|_{0^+ \to 0^+} = 0.97420(10)_{\mathcal{F}t}(18)_{\mathrm{RC}} \text{ PDG 2018}$$

 $\to 0.97370(10)_{\mathcal{F}t}(10)_{\mathrm{RC}} \text{ PDG 2020}$

Closing the chapter for single-nucleon RC

Direct lattice QCD calculation of the **neutron** γ **W box diagram**, (calculating four-point functions in analogy to pion, or using Feynman-Hellmann theorem)

More precise data on **neutrino-nucleus scattering**, as input to DR. e.g. from DUNE (Fermilab)

A closer look at the nuclear corrections

"outer correction" Isospin breaking (ISB) effects in nuclear states $\mathcal{F}t = ft \, (1+\delta_{\mathrm{R}}') \, (1+\delta_{\mathrm{NS}}-\delta_{\mathrm{C}})$ Nuclear modification of free-nucleon RC

CVC + absence of second-class current : Ft = constant

- Current estimations of nuclear effects are based entirely on shell model + Woods-Saxon WF.
 How reliable are they?
- Several new nuclear corrections are recently identified!

A closer look at the nuclear corrections

"outer correction" Isospin breaking (ISB) effects in nuclear states

$$\mathcal{F}t = ft \left(1 + \delta_{R}'\right) \left(1 + \delta_{NS} - \delta_{C}\right)$$

Nuclear modification of free-nucleon RC

CVC + absence of second-class current : Ft = constant

Ab-initio calculations of nuclear corrections: e.g. Lorentz Integral Transform, Quantum Monte Carlo, Coupled Cluster...

see G. Hagen and S. Bacca, in the 2019 ECT* workshop "Precise beta decay calculations for searches For new physics"

Constraining the ISB effects from experimental measurements of charge radii and neutron skins

Decay of free neutron and nuclear mirrors

$$ft = \frac{K}{G_V^2 \left\langle \tau \right\rangle^2 + G_A^2 \left\langle \sigma \tau \right\rangle^2}$$

 G_{v} , G_{A} : vector and axial coupling (after RC)

 $<\sigma>$, $<\sigma\tau>$: **Fermi** and **Gamow-Teller** matrix element

RC to GT-matrix element: not relevant for V_{ud} extraction because axial coupling*GT-matrix element is directly measured.

However, it is useful in comparison between experiment and first-principles QCD Predictions. E.g. $\lambda = g_A/g_V$ from neutron decay asymmetry, and the pure-QCD g_A obtained from lattice. Could become a future avenue for BSM searches.

Systematic analysis of RC to Gamow-Teller rates.

L. Hayen, available soon on arXiv

V₁₁₈ from kaon decays

~3 σ discrepancy exists between V_{us} extracted from leptonic kaon decay ($K_{\mu 2}$) and semileptonic kaon decay (K_{ls}):

$$|V_{us}^{K_{\mu 2}}| = 0.2252(5), \quad |V_{us}^{K_{l3}}| = 0.2231(4)_{\text{exp+RC}}(6)_{\text{lattice}}.$$
 (PDG 2020)

E.Passemar, INT-19-75W

Signal of BSM physics or unidentified SM systematic errors? Needs further theory improvement to tell.

 $\mathbf{K}_{\mu 2}$ result comes from the ratio $\mathbf{R}_{\mathbf{A}} = \Gamma_{\mathbf{K}\mu 2}/\Gamma_{\pi\mu 2}$, which is more robust due to the partial cancellation of uncertainties. We shall **focus mainly on K**₁₃.

V_{us} from kaon decays

K_{13} decay rate formula:

Possible culprit: $f_{\downarrow}(0)=0.9706(27)$ (FLAG-averaged, 2020). Discrepancies exists between different lattice results:

$$|f_{+}^{\pi^{-}K^{0}}(0)| = \begin{cases} 0.9696(15)(12) & \text{FNAL/MILC} \\ 0.9603(16)\binom{+14}{-4}(44)(19) & \text{PACS} \end{cases}$$

Reconcile the conflicting numbers!

V₁₁₈ from kaon decays

Remaining theory input with significant model dependence: the **long-range EM corrections**

Limitations from fixed-order ChPT

LECs calculated within resonance model

Lattice QCD calculations of the LECs

Including higher-order effects: by multi-loop ChPT calculation, or by new theory framework

They will also improve the theory prediction of the ratio $R_V = \Gamma_{KI3} / \Gamma_{\pi I3}$, which serves an another important avenue to extract V_{US} / V_{Ud} .

Synergies with other LOIs

Neutron/pion beta decay experiments

- "Neutron beta decay in the test of the Unitarity of the CKM matrix", SNOWMASS21-RF0_RF3-102
- "Testing lepton flavor universality and CKM unitarity with rare pion decays", SNOWMASS21-RF2_RF3-048

Lattice QCD

- "Precise Lattice QCD calculations of kaon and pion decay parameters and first-row CKM unitarity tests",
 - SNOWMASS21-RF2_RF0-EF5_EF0-TF5_TF0-CompF2_CompF0_El-Khadra-094
- "High-precision determination of Vus and Vud from lattice QCD", SNOWMASS21-RF2_RF0-TF5_TF0-CompF2_CompF0-054

Neutrino scattering experiments

• "Neutrino Scattering Measurements on Hydrogen and Deuterium", SNOWMASS21-NF6_NF3-TF11_TF5_LauraFields_RichardHill_TomJunk-165